
Mass Drivers pt. 2 – Explosive Change
A Continuation of Part 1 – Tackling New Challenges

From the Depths (FTD) – Quick Summary
An obscure Indie game that was in open access
for 7 years with a small but dedicated following
that is a favorite of mine.

FTD is a voxel-based combat vehicle sandbox
game that allows players to build vehicles from
design to implementation. Everything in a
vehicle from the engine to the armor is built
from the ground up.

With a variety of different weapons, engines
and armor types to choose from, designing
involves trade offs and deliberate choices that
give the game incredible depth and complexity.

What’s Changed with Mass Drivers?

• An update to how collision damage is calculated completely
nerfed the damage of kinetic projectiles into the ground.

1k - 5001 mil – 800k For reference, a 4m metal
beam in FTD has 1680 health

• But there is still an option available to us, using the projectile not
as the main damage source, but as a delivery mechanism for an
explosive payload.

Pre-nerf damage Post-nerf damage

The Payload in Question
• Let's look at the two most relevant

stats for the mass driver, the weight,
and explosive power.

• Clocking in at 400 weight, the
tactical nuke itself is nearly 20x the
weight of the old kinetic projectiles.

• This means much more power is
needed to accelerate this to the
kinds of speeds that we desire.

• But, clocking in at a base of 500k
explosive damage, this weapon
packs quite the punch, especially
considering its small 2m^3 size,
making it a perfect substitute for
collision based damage.

Why Still Pursue Mass Drivers?

• With the switch to nukes, the incredible cost efficiency of the old
design is trashed, so why bother still?

• Simply put, the range. In theory, a well built system should be
capable of hitting targets in excess of 40+ km. For context, typical
engagement range in FTD is 1 to 2 km, with 3+ km being outside
the effective range of most weapon systems.

• Along with that, the speed of the projectile makes it effectively
impossible to counter, since it only stays in the effective range
typical weapon systems for 2 or 3 game ticks. That isn’t nearly
enough time to shoot the projectile down.

Mk 2
• First of 3 new design iterations
• Still using the spinblock method for power regulation.
• Sustained rate of fire of 15 RPM (4 second cycle).

• Custom projectile creation
system to bypass 30 second.
cooldown on vehicle spawners

• Massive armored sphere to allow
the driver to engage in 2 axis
rotation while still being
protected.

Mk 2 Firing

Control system for the spawners (more on
this in the next slide)

In case you’re wondering, the smoke is coming from the smoke
warhead components on the graviton ram rounds. In order for the
shells to detonate after they hit the projectile, they need a payload,
and smoke is the only payload that won’t cause damage to the rest of
the vehicle.

Spawner System
Vehicle spawners have a 30 second cooldown between spawns. This is far to slow for the 15
rpm I want to achieve, so I created a system that cycles thought 12 different vehicle spawners.
The next two versions use a system similar to this. I’ll explain this in more detail so I don’t have
to go into the nitty gritty with the other two.

There are 3 main parts to this system.
Ticker Piston Governor Spawner Governor

Spawner System
Ticker

• The ticker is a timer that produces a pulse once every 4
seconds.

• There is also logic setup to turn the ticker on and off
and to allow for manual firing of the mass driver for
testing purposes.

• The “Q=False” is the on/off switch. Those inputs are
either 1 or 0, so by multiplying the Q input by the pulse
signal, we can control the pulse.

• The “A=False” is the manual pulse, which can be
combined with turning the constant value on the right
side to zero to grant full manual control of the cannon.

Spawner System
Piston Governor

• The piston governor is responsible for cycling through
the vehicle spawners and lowering the correct set of
vehicle spawners down into the firing position.

• The pulse from the ticker is fed into a “summation”
component which goes through 0 to 3. This number
is then read through a formula (abs(a-x) where x is
the value that makes the formula return 0.

• Then there are “threshold” components that only
return true when their input is > 0. Set up correctly
this system will cycle through 4 different outputs.

Spawner System
Spawner Governor

• There are 4 groups of spawners. Each group has an
automated control block (ACB), pictured in the bottom
left) that checks if there is a projectile currently loaded
in that particular group.

• The spawner governor reads this input and checks
when a change occurs (no projectile -> projectile, etc).
We toss out the no projectile -> projectile change, and
only pulse the system when we go projectile to no
projectile since we only want to try to spawn a new
projectile once the current one has been fired.

• Similar to the piston governor, this input is fed into a
summation component that cycles through the 3
different vehicle spawners in each group.

Mk 2 Power Selection & the Drag Problem
At the speeds achievable by mass drivers, it’s easy to traverse the whole game map in a few
seconds. This means theoretically, a target can be hit anywhere on the map. However, we must
contend with drag. The distance between each tick decreases and if we don’t account for that,
the simplistic method of dividing distance by first tick speed fails.

Tick 1 Tick 2 Tick 3 Tick 4
Hypothetical
targetA way to think about this problem is to write it as an equation of the form

(x + c1x + c2x ... + cnx) = Target distance where c represents what percent that tick is compared to
the first tick, so they would be values like 0.98, 0.97, etc. N represents how many ticks we are
using. Solving for x we get x = target distance / (c1+c2 + … + cn).

Target distance is easily attainable in game, but finding n and the corresponding c values is
trickier.

Mk 2 Power Selection & the Drag Problem
• C and n must be determined empirically through data, in

this case looking at the speed data that I got by going frame
by frame through gameplay footage I captured.

• Across 12 different trials, I gathered the absolute speed
values of each game tick and then calculated the
percentage lost from tick to tick. Then, I average the loss for
each tick across the 12 trials and plotted the result.

• As can be seen in the bottom left, the loss values follow an
exponential decay over time.

• To find n, I first start by taking the average speed of the first
tick and dividing by 40 to go from meters/second to
meters/game tick. Then, we approximate n as
target distance / first tick speed. This effectively
approximates n as the number of ticks we would need if
there wasn’t any drag, and we can get way with this
because the drag is small enough to do so.

Mk 2 Power Selection Implementation

• To find cn we multiply all the loss values up
to the nth tick. What we are finding is
effectively what percentage the nth tick is
compared to the first tick.

• As an example, if the 2nd tick is 98% of the
first, and the 3rd tick is 97% of the 2nd then
the 3rd tick is 97%*98% of the first tick.

• Since all the c values are less than one, we
end up with a value less than what the no
drag approximation would be and, in effect,
bring the tick that overshoots the target
backwards onto the target.

Tick 1 Tick 2

Tick 1 Tick 2

Mk 3 • Unlike the previous two iterations,
this design doesn’t use spinblocks
for power regulation. This is because
a new feature was added into the
game that allows for direct control of
the amount of power a railgun uses.

• This design is much more compact
since the driver cannons don’t need
to rotate and therefore, take an
enormous amount of space to move
in.

• The Mk 3 also achieves twice the fire
rate of the Mk 2, shooting at 30 rpm.

• Each gun is also at the maximum rail
power draw of 200,000. For
comparison, the guns on the Mk 2
only operated at 135,000 rail draw.

• The Mk 3 ended up being a testbed
for experiments in increasing
accuracy in ways I hadn’t tested
before.

Mk 3 Spawner System
• The Mk 3 uses a revolving spawning system that

operates very similar to the Mk 2 system.
• The main difference is that the spawning of the

projectiles isn’t controlled by spawner sensors
but is controlled in a fixed pattern like the pistons
on the Mk 2.

• The Mk 2 system wouldn’t have been able to
sustain the 30 pm since the pistons move too
slow to reset the cycle in 2 seconds. Along with
that this design is more compact than the Mk 2’s
setup.

Mk 3 Experiments
• My experiments with the Mk 3

involved adding spin to the
projectile since I had observed
it tumbling and becoming
unstable at longer ranges.

• Like I did previously, I redid my
drag analysis and found that
the spin introduced a
sinewave into the loss
percentages (next slide)

• Excel can’t make a good
model to fit this data, so I
used MATLAB instead through
a least squares regression on
an equation with both an
exponential and sine wave
component. (next slide)

Mk 3 Experiments

MATLAB code (orange is data points, blue is fitted model) | Excel plot of loss percents

Mk 4 Prototype
• I was unsatisfied with the accuracy of the Mk 3, so I

moved on to a new design.
• This design makes use of another accuracy increasing

mechanic in the game, specifically tracer rounds. The
cannons on this design alternate between the normal
graviton ram and a tracer round which gives a 30%
accuracy bonus.

• Currently being used as a test bed for experimentation
as I try to figure out the ideal setup for maximum
effective range.

• Other than that, it uses many of the same systems
that the Mk 3 uses

	Mass Drivers pt. 2 – Explosive Change
	From the Depths (FTD) – Quick Summary
	What’s Changed with Mass Drivers?
	The Payload in Question
	Why Still Pursue Mass Drivers?
	Mk 2
	Mk 2 Firing
	Spawner System
	Spawner System
	Spawner System
	Spawner System
	Mk 2 Power Selection & the Drag Problem
	Mk 2 Power Selection & the Drag Problem
	Mk 2 Power Selection Implementation
	Mk 3
	Mk 3 Spawner System
	Mk 3 Experiments
	Mk 3 Experiments
	Mk 4 Prototype

